Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400458

RESUMO

This paper studies the security and reliability of the power splitting (PS)-based relaying in the Internet of Things (IoT) networks with the help of a jammer. Based on the considered system model, we derive outage probability (OP) and intercept probability (IP) under two distinguished schemes, namely, the static PS relaying (SPSR) scheme and the dynamic PS relaying (DPSR) scheme. More precisely, the PS ratio of the former is a constant number, while the latter is optimally adjusted in order to minimize the OP and counts only on the channel gain of the second hop. Numerical results are provided to not only verify the accuracy of the proposed mathematical framework but also identify the trends of both OP and IP with respect to several important parameters. Our findings unveil that the OP and IP have contradictory behavior with respect to the transmit power and number of sources. Moreover, the performance of the DPSR scheme is superior to that of the SPSR scheme.

2.
Sensors (Basel) ; 23(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37688073

RESUMO

This paper investigates the security-reliability of simultaneous wireless information and power transfer (SWIPT)-assisted amplify-and-forward (AF) full-duplex (FD) relay networks. In practice, an AF-FD relay harvests energy from the source (S) using the power-splitting (PS) protocol. We propose an analysis of the related reliability and security by deriving closed-form formulas for outage probability (OP) and intercept probability (IP). The next contribution of this research is an asymptotic analysis of OP and IP, which was generated to obtain more insight into important system parameters. We validate the analytical formulas and analyze the impact on the key system parameters using Monte Carlo simulations. Finally, we propose a deep learning network (DNN) with minimal computation complexity and great accuracy for OP and IP predictions. The effects of the system's primary parameters on OP and IP are examined and described, along with the numerical data.

3.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617128

RESUMO

Outage probability (OP) and potential throughput (PT) of multihop full-duplex (FD) nonorthogonal multiple access (NOMA) systems are addressed in the present paper. More precisely, two metrics are derived in the closed-form expressions under the impact of both imperfect successive interference cancellation (SIC) and imperfect self-interference cancellation. Moreover, to model short transmission distance from the transmit and receive antennae at relays, the near-field path-loss is taken into consideration. Additionally, the impact of the total transmit power on the performance of these metrics is rigorously derived. Furthermore, the mathematical framework of the baseline systems is provided too. Computer-based simulations via the Monte Carlo method are given to verify the accuracy of the proposed framework, confirm our findings, and highlight the benefits of the proposed systems compared with the baseline one.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...